
Arkansas Department of Workforce Education

Re-Formatted:  2005

Disseminated by
Career and Technical Education

Office of Assessment and Curriculum
Arkansas Department of Workforce Education

Arkansas Department of Workforce Education

Doretta Griffin, Public School Program Advisor
Brenda Buerkle, Public School Program Advisor

Edited by
Linda Shock, Program Manager

Development/Revision Began: 09/2003

PROGRAMMING I
Curriculum Content Frameworks

Prepared by

Marilyn Carrell, Springdale High School

Karen Chisholm, Program Manager
Office of Assessment and Curriculum

Xerlotta Sanders, Central High School, Little Rock
Wayne Martin, Shirley High School

Jim Brock, Public School Program Advisor

Facilitated by

Ted Dean, Public School Program Advisor
Office of Business/Marketing Technology



Depending on the language used, the terms functions , subprogram , method , and procedure  are similar.  However, they are used somewhat differently.  In some 
languages, the terms subprogram  and procedure  have the same effect as a void function in C++ and Java.  In those languages, the term function  is used only to 
apply to functions that return a value (in C++ and Java, all of these are called functions).

The contents of these frameworks are not intended to be taught in this order as independent units.  Many of the skills are best introduced in one unit and then 
spiraled back to in future units with more complexity added.  However, by the end of the semester, all skills should be taught.

Programming I

The contents of these frameworks are designed to be taught in one language.  The first semester of any language should be Programming I.  Currently, almost 
certainly the three best language choices are Visual Basic, Java, and C++.  Java has an advantage over C++ since the College Board has selected it for the 
language of the Advanced Placement Exam, and many universities are using Java as their first programming language.  Visual Basic is widely used in business 
programming.

The contents of these frameworks are kept to the essentials.  This was done to allow the teacher time to address the specific features of the language chosen.  The 
framework team recognized there are vastly different additional items that need to be addressed in a visual Windows application (like Visual Basic) rather than in a 
console application (like those used by the College Board).  We expect the teacher will use the remaining time in the semester to cover those topics not listed in 
these frameworks.

The experience of the members of the frameworks committee, who have taught programming classes for several years, is that Algebra I be a strongly enforced 
prerequisite.  It is our experience that students who have not successfully completed Algebra I (with an A or B) will not be successful in this class.  Not only are 
mathematical concepts and formulas incorporated into the skills, but the problem-solving skills necessary are not adequately developed until the completion of 
Algebra I.

Programming I



Page

Unit 1:  Introduction to Programming and Ethics in Programming 1

Unit 2:  Programming Techniques and Characteristics of Good Programs 3

Unit 3:  Data Types and Mathematical Operations 5

Unit 4:  Printing and Formatting 7

Unit 5:  Structured and Object-oriented Programming 8

Unit 6:  Interactive Program, Program Execution, Prompt 9

Unit 7:  Decision Structure 10

Unit 8:  Loops 11

Glossary 13

Programming I

Table of Contents

Course Description: Programming I is a one-semester course in any modern, high-level, structured language. Concepts should be taught in the context of practical
applications.

PROGRAMMING I
Grade Levels:  9, 10, 11, 12
Course Code:  492390

Curriculum Content Frameworks

Prerequisite:  Keyboarding and Algebra I
(Strongly Recommended)



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
1.1 1.1.1 Speaking

Thinking

1.2 1.2.1 Reading

Thinking

1.3 1.3.1

Thinking

1.4 1.4.1 Reading

Thinking

1.5 1.5.1 Speaking

Thinking

Explain the difference between 
system and application software

Discuss various operating 
systems and their differences 
(i.e., Windows, Mac, Linux)

Reading

Communicates a thought, idea, or fact in spoken 
form [1.5.5]

Knowing how to 
Learn

Understands technical words that pertain to 
hardware/software [1.3.6]

Define terms related to 
hardware and software

Applies new knowledge and skills to differentiate 
between system and application software [4.3.1]

Knowing how to 
Learn

Tell where each operating system is used 
most frequently

Identify various software as system or 
application

Reasoning

Foundation

Identify technology as either hardware or 
software

Foundation

Foundation

Sees relationship among various operating 
systems [4.5.5]

Applies new knowledge and skills to differentiate 
between hardware/software [4.3.1]

Understands technical words that pertain to high- 
and low-level languages [1.3.6]

Explain the difference between 
high-level and low-level 
languages

Understands technical words that pertain to 
various operating systems and their differences 
[1.3.6]

Classify commonly used programming 
languages as high-level or low-level

Foundation

Unit 1:  Introduction to Programming and Ethics in Programming
Hours:  3

Terminology:  Application software, Compiler, Hardware, High-level language, Interpreter, Low-level language, Operating system, Software, System software

Foundation Applies/Understands technical words that pertain 
to subject [1.3.6]

Explain the difference between 
interpreters and compilers

Give an example of how a compiler 
functions verses how an interpreter 
functions

Reasoning Sees relationship between high- and low-level 
languages [4.5.5]

Reasoning Sees relationship between interpreters and 
compilers [4.5.5]

Programming I
1



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
1.6 1.6.1 Speaking

Thinking Reasoning Sees relationship between ethics/privacy issues 
and programming [4.5.5]

Identify ethical and privacy practices in 
computer programming

Discuss the ethical and privacy 
issues of programming

Applies/Uses technical terms as appropriate to 
audience [1.5.2]

Foundation

Programming I
2



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
2.1 2.1.1 Science

Writing

Thinking

2.2 2.2.1 Writing

Thinking

2.3 2.3.1

2.3.2 Thinking

2.4 2.4.1

2.4.2

Thinking

Communicates thoughts, ideas, or facts in written 
form in a clear, concise manner [1.6.6]

Applies new knowledge and skills to properly 
document programs [4.3.1]

Devises and implements a plan of action to 
resolve problems [4.3.1]

Communicates thoughts, ideas, or facts in written 
form in a clear, concise manner [1.6.6]

Communicates thoughts, ideas, or facts in written 
form in a clear, concise manner [1.6.6]

Identify the syntax to document 
programs

Use appropriate syntax to include 
comments in programs

Knowing how to 
Learn

Foundation Writing

Writing

Write programs whose output is easy 
to read and understand

Personal 
Management

Organizes information in an appropriate format 
[1.6.10]

Organizational 
Effectiveness

Comprehends the organization's modes of 
operation [3.3.5]

Problem Solving

Reasoning Sees relationship between steps in the 
programming process [4.5.5]

Explain the importance of 
program documentation and 
maintenance

Foundation

Write programs that have clear 
instructions

Explain the characteristics of 
user-friendly programs

Foundation

Write programs that are well-documented

Update an existing program

Unit 2:  Programming Techniques and Characteristics of Good Programs
Hours:  2

Foundation

Terminology:  Algorithm, Documentation, Logic error, Program maintenance, Pseudocode, Run-time error, Syntax, Syntax error, User-friendly

(Reinforced Throughout the Semester)

List the steps of the 
programming process

When given an example, be able to 
identify the correct steps

Solves practical problems using scientific 
methods and techniques [1.4.22]

Problem Solving Devises and implements a plan of action to 
resolve problems [4.4.3]

Programming I
3



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
2.5 2.5.1 Writing

Thinking

2.6 2.6.1 Thinking

2.7 2.7.1 Writing

2.7.2
Thinking

2.7.3

Devises and implements a plan of action to 
resolve problems [4.4.3]

Explain the importance of 
program documentation and 
maintenance

Problem Solving

Write a pseudopodia (algorithm) for a 
programming problem

Foundation Communicates thoughts, ideas, or facts in written 
form in a clear, concise manner [1.6.6]

Applies new knowledge and skills properly [4.3.1]

Explain the characteristics of 
readable programs

Use indention and blank space to makea 
program more readable

Use descriptive identifiers

Identify different types of errors When given an example, identify the error 
type

Knowing how to 
Learn

Document difficult logic to make it easy to 
follow

Foundation Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Knowing how to 
Learn

Applies new knowledge and skills properly [4.3.1]

Programming I
4



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
3.1 3.1.1

3.1.2

Writing

3.1.3
Thinking

3.1.4

3.1.5
3.2 3.2.1

Writing

Thinking

3.3 3.3.1

Writing

3.4 3.4.1 Writing

Thinking

Explain the advantages of using 
integer variables whenever 
possible (faster computation, 
require less memory, obtain 
exact answers)

Foundation Arithmetic/ 
Mathematics

Communicates thoughts, ideas, or facts in written 
form in a clear, concise matter [1.6.6]

Foundation

Comprehends ideas and concepts related to 
integer variables [4.2.2]

Comprehends mathematical ideas and 
concepts related to integer variables [1.1.13]

Determine whether a particular "number" 
would be considered numeric

Use floating-point variables in programs 
where appropriate

Determine whether a number should be 
treated as an integer or floating point (i.e., 
single, double)

Designate data type using correct syntax
Use integer variables in programs where 
appropriate

Presents answers/conclusions in a clear and 
understandable form [1.6.13]

Compare the four data types Comprehends mathematical ideas and concepts 
related to the characteristics of numeric data 
[1.1.13]Determine whether an identification 

number (such as a Social Security 
Number) should be treated as a string or 

b

Arithmetic/ 
Mathematics

Unit 3:  Data Types and Mathematical Operations
Hours:  15

Terminology:  Boolean, Constant, Data type, Floating point (real), Integer, Mathematical operators, Order of operations, Random numbers, Round-off error, String, Variable

FoundationDiscuss string, integer, Boolean, 
and floating-point

Reasoning Comprehends ideas and concepts related to data 
[4.5.2]

Arithmetic/ 
Mathematics

Comprehends ideas and concepts related to the 
characteristics of string data [4.2.2]

Decision Making

Uses words appropriately [1.6.21]

Decision Making

Explain the advantage and 
disadvantages of floating-point 
numbers (round-off errors, more 
money, approximate answers, 
slower computation, size of 
numbers to be stored, etc.)

Comprehends mathematical ideas and 
concepts related to floating-point variables 
[1.1.13]

Uses words appropriately [1.6.21]

Decision Making Comprehends ideas and concepts related to 
floating-point numbers [4.2.2]

Explain the characteristics of 
string data

Write programs that contain strings

Foundation

Programming I
5



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
3.5 3.5.1 Foundation

3.5.2
Thinking Reasoning

3.6 3.6.1 Writing

Thinking
3.6.2

Reasoning Comprehends ideas and concepts related to 
variable names [4.5.2]

Comprehends mathematical ideas and concepts 
related to arithmetic operations/
order of operations [1.1.13]

Select legal variable names

Arithmetic/
Mathematics

Explain rules for choosing 
variable names

Write programs that use descriptive 
variable names

Foundation Uses words appropriately [1.6.2]

List arithmetic operations and 
order of operations

Write formulas using operators and order 
of operations

Write programs that use mathematical 
operations correctly Comprehends ideas and concepts related to 

programs with mathematical operations [4.5.2]

Programming I
6



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
4.1 4.1.1 Writing

Thinking

4.2 4.2.1 Writing

Thinking

4.3 4.3.1 Writing

4.3.2 Thinking

4.4 4.4.1 Writing

4.4.2

4.4.3
Thinking Reasoning

Explain the syntax for formatting 
numeric data

Explain the syntax to properly 
space output on a line

Comprehends ideas and concepts related to 
formatting [4.5.2]

Reasoning

Reasoning

Comprehends ideas and concepts related to 
printing variables and results of mathematical 
operations [4.5.2]
Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Write programs that output sentences with 
string and numeric data

Foundation

Organizes information in an appropriate format 
[1.6.10]

Explain the commands and 
syntax for editing numeric and 
string data

Print numeric data with a fixed number of 
digits after the decimal point

Unit 4:  Printing and Formatting
Hours:  5

Explain the syntax to print 
variables and answers to 
mathematical operations

Write programs that print the contents of 
variables and the results of mathematical 
operations

Foundation Presents answers/conclusions in a clear and 
understandable form [1.6.13]

Terminology:  Formatting

Reasoning

Comprehends ideas and concepts related to 
formatting [4.5.2]

Applies/Uses technical words and concepts 
[1.6.4]

Organizes information in an appropriate format 
[1.6.10]

Comprehends ideas and concepts related to 
formatting [4.5.2]

FoundationPrint numbers with a specific number 
of decimal places

Print numeric data with commas

Print data using a fixed length

Print numbers in currency

Foundation

Programming I
7



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
5.1 5.1.1 Speaking

Thinking

5.2 5.2.1 Writing

Thinking

5.3 5.3.1 Writing

5.3.2 Thinking Problem Solving

5.4 5.4.1 Speaking

Thinking

5.5 5.5.1 Foundation Writing

Thinking Problem Solving

Unit 5:  Structured and Object-oriented Programming
Hours:  10

Devises and implements a plan of action to 
resolve problems [4.4.3]

Organizes information in an appropriate format 
[1.6.10]

Define and explain structured 
programming (programs with 
main programs and functions, 
procedures, or subs)

Foundation

Foundation

Communicates a thought, idea, or fact in spoken 
form [1.5.5]

Devises and implements a plan of action to 
resolve problems [4.4.3]

Problem Solving

Sees relationship between two or more ideas, 
objects, or situations [4.5.5]

Describe the purpose of the 
main module, and list the rules 
for designing submodules

Write programs that use the main programs 
as a control module

Terminology:  Function, Hierarchy chart, Method, OOP (Object-oriented programming), Procedure, Structure chart, Structured programming, Subprogram, Visual table of contents (VTOC)

Define and explain the function 
of a hierarchy chart, visual table 
of contents (VTOC), or structure 
chart

Draw a hierarchy chart, VTOC, or structure 
chart for structured programs

Composes and creates documents -- letters, 
manuals, reports, proposals, graphs, flow charts, 
etc. [1.6.8]

Foundation Applies/Uses technical words and concepts 
[1.6.4]

When shown an example, determine 
whether a program is structured

Write complete structured programs

Define object-oriented 
programming (OOP)

List a language that uses OOP

Reasoning

Foundation Communicates a thought, idea, or fact in spoken 
form [1.5.5]

Reasoning Comprehends ideas and concepts related to 
OOP [4.5.2]

Explain the use of dot notation 
in OOP

Write programs that use dot notation to use 
the methods in classes that are part of the 
language (i.e., txtbox.text in VB or system 
out in Java)

Organizes information in an appropriate format 
[1.6.10]

Devises and implements a plan of action to 
resolve problems [4.4.3]

Programming I
8



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
6.1 6.1.1 Speaking

Thinking

6.2 6.2.1 Writing

Thinking

6.3 6.3.1 Writing

Thinking

Identify the syntax for obtaining 
data from a keyboard during 
program execution

Unit 6:  Interactive Program, Program Execution, Prompt
Hours:  10

Foundation

Terminology:  Interactive program, Program execution, Prompt

Discuss interactive programs Write a program that gets data from a user 
during execution (visual languages should 
use both text boxes and input boxes)

Describe the qualities of good 
prompts

Write programs that use good prompts

Problem Solving

Problem Solving Devises and implements a plan of action to 
resolve problems [4.4.3]

Communicates thoughts, ideas, or facts in written 
form in a clear, concise manner [1.6.6]

Devises and implements a plan of action to 
resolve problems [4.4.3]
Applies/Uses technical words and concepts 
[1.6.4]

Reasoning

Communicates thoughts, ideas, or facts in 
spoken form [1.5.5]

Comprehends ideas and concepts related to 
interactive programs [4.5.2]

Write programs that get data from the 
keyboard during program execution

Foundation

Foundation

Programming I
9



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
7.1 7.1.1

7.1.2
Writing

Thinking

7.2 7.2.1 Foundation Writing

Thinking Problem Solving

7.3 7.3.1 Foundation Writing

Thinking Problem Solving

7.4 7.4.1 Foundation Writing

Thinking Problem Solving

7.5 7.5.1 Thinking

7.6 7.6.1 Foundation Writing

Thinking Problem Solving

Unit 7:  Decision Structure
Hours:  15

Terminology:  Boolean expression, Logical operators, Nested statement, Relational operator, Selection structure (switch/select case), Truth table

Foundation Arithmetic/ 
Mathematics

List relational operators Use the appropriate relational operator

Determine the relationship when used with 
string data

Interprets mathematical symbols [1.1.26]

Applies/Uses technical words and concepts 
[1.6.4]

Reasoning Comprehends ideas and concepts related to 
relational operators [4.5.2]

Explain the syntax and logic of If 
statements

Organizes information in an appropriate format 
[1.6.10]

Devises and implements a plan of action to 
resolve problems [4.4.3]

Explain the syntax and logic of If-
Then-Else statements

Write programs that use block If-Then-Else 
statements

Organizes information in an appropriate format 
[1.6.10]

Write programs that use block If-Then 
statements

Devises and implements a plan of action to 
resolve problems [4.4.3]

Explain the syntax and logic of 
nested statements

Write programs using block If-Then-Else 
for three or more alternatives

Organizes information in an appropriate format 
[1.6.10]

Devises and implements a plan of action to 
resolve problems [4.4.3]

Explain the use of logical 
operators and , or , not

Write programs that require the use of and , 
or , not

Reasoning Sees relationship between two or more ideas, 
objects, or situations [4.5.5]

Use selection structure (select 
case, switch case)

Write programs that use the selection 
structure of the language

Organizes information in an appropriate format 
[1.6.10]

Devises and implements a plan of action of 
resolve problems [4.4.3]

Programming I
10



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
8.1 8.1.1 Writing

Thinking

8.2 8.2.1 Writing

Thinking Problem Solving

8.3 8.3.1 Writing

8.3.2

Thinking

Explain the procedure to use 
loops to count in increments/ 
decrements other than one

Write counting for loops with increments 
other than one

Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Unit 8:  Loops
Hours:  20

Terminology:  Accumulator, Counter, Nested loop, Sentinel loop

FoundationExplain for loops Write programs that use simple counting 
loops

Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Foundation

Applies/Uses technical words and concepts 
[1.6.4]

Foundation

Problem Solving Devises and implements a plan of action to 
resolve problems [4.4.3]

Organizes information in an appropriate format 
[1.6.10]

Applies/Uses technical words and concepts 
[1.6.4]

Devises and implements a plan of action to 
resolve problems [4.4.3]

Decision Making Demonstrates decision-making skills [4.2.4]

Problem Solving Devises and implements a plan of action to 
resolve problems [4.4.3]

Explain the syntax of nested 
loops

Determine the output of a nested loop 

Write programs using nested loops

Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Programming I
11



CAREER and TECHNICAL SKILLS ACADEMIC and WORKPLACE SKILLS

What the Student Should be Able to Do What the Instruction Should Reinforce

Knowledge Application Skill Group Skill Description
8.4 8.4.1 Writing

Thinking Problem Solving Devises and implements a plan of action to 
resolve problems [4.4.3]

Uses language, style, organization, and format 
appropriate to subject matter, purpose, and 
audience [1.6.19]

Explain the logic of do while 
loops

Write programs with do while  loops Foundation Applies/Uses technical words and concepts 
[1.6.4]

Programming I
12



1.

2.

3. Hardware – the physical components that make up a computer system

4. High-level language – a programming language that uses English-like words and symbols

5. Interpreter – a program that translates a high-level language into machine code one line at a time as the program is being executed

6. Low-level language – a programming language that is non-English-like, such as machine code or assembly language

7. Operating system – the software that allows the computer to communicate with the peripherals and that manages or controls the function of the computer

8. Software – computer instructions that cause the computer to perform desired tasks

9. System software – programs that allow users to write and execute other programs

Glossary

Application software – software that is used to accomplish a specialized task; i.e., word processing, spreadsheets, games, instructional programs, tax 
software, and graphics programs

Compiler – a computer program that translates the code of a high-level language into machine code and stores that machine-readable code in an executable 
file

Unit 1:  Introduction to Programming and Ethics in Programming

Programming I
13



1. Algorithm – a set of steps to follow to solve a problem

2. Documentation – explanation of how a program works; i.e., comments inside the program, flow charts, and other explanatory material

3. Logic error – an error in a program that will run, which produces incorrect, unexpected results

4. Program maintenance – the process of keeping a program up-to-date and edited to match changing conditions

5.

6. Run-time error – an error that is detected after a program is running; produces an error message rather than an incorrect answer like a logic error would

7. Syntax – the grammar rules (spelling, punctuation, etc.) of a language

8. Syntax error – a grammar error; spelling, punctuation, etc.

9. User-friendly – a program that is easy to use with clear, easy-to-understand instructions

Unit 2:  Programming Techniques and Characteristics of Good Programs

Pseudocode ("fake program") – a set of instructions to solve a programming problem in English or a combination of English and the programming language

Programming I
14



1.

2. Constant – a named memory cell that contains a value that cannot be changed as the program runs

3.

4.

5. Integer – a data type that can store whole numbers, both positive and negative

6. Mathematical operators – symbols that represent mathematical actions (+, -, *, /, etc.)

7. Order of operations – the order in which mathematical operations are performed:  parenthesis, exponents, multiplication/division, addition/subtraction

8. Random numbers – numbers that are produced in a nonpatterned manner

9. Round-off error – a condition in which a portion of a real number is lost because of the way it is stored in memory

10. String – a group of characters enclosed in quotation marks

11. Variable – a named memory location that contains values that can be changed as the program is executed

Unit 3:  Data Types and Mathematical Operations

Data type – a way to specify what kind of data can be stored in a variable or constant; i.e., integer, double, single, Boolean, char, string

Floating point (real) – a method of writing numbers in scientific notation to accommodate numbers that may be very large or very small; these numbers may 
include a decimal point; i.e., float, single, and double

Boolean – a data type that can store only false or true

Programming I
15



1. Formatting – designating the way data should appear; includes displaying a dollar sign, a specified number of digits, the percent sign with numbers

Unit 4:  Printing and Formatting

Programming I
16



1. Function – a section of named code that performs a specific task

2. Hierarchy chart – a graphical method of showing the relationship between the modules of the program; called structure chart  or VTOC  in some textbooks

3. Method – a section of named code that performs a specific task

4.

5. Procedure – a section of named code that performs a specific task

6.

7. Structured programming – a program that implements a top-down design in which the code is broken up into modules

8. Subprogram – a section of named code that performs a specific task

9.

Unit 5:  Structured and Object-oriented Programming

Object-oriented programming (OOP) – building a program by creating, controlling, and modifying objects; defining a class with a set of data with methods to 
manipulate and use that data

Visual table of contents (VTOC) – a graphical method of showing the relationship between the modules of the program; called structure chart  or hierarchy 
chart  in some textbooks

Structure chart – a graphical method of showing the relationship between the modules of the program; called hierarchy chart  or VTOC  in some textbooks

Programming I
17



1.

2. Program execution – the carrying out of the instructions of the program; running the program

3. Prompt – the question or instructions that ask the user for input

Unit 6:  Interactive Program, Program Execution, Prompt
Interactive program – a program that gets information from and provides responses to users

Programming I
18



1.

2.

3.

4.

5. Selection structure (switch/select case) – a statement selects the correct path depending on the value of a variable

6. Truth table – a table that lists all the possible values of a Boolean expression

Unit 7:  Decision Structure
Boolean expression – an expression that evaluates to either true or false; i.e., age>15, which is either false or true

Logical operators – and , not , or ; the symbols that represent and , not , or

Relational operator – an operator that compares data; greater than, less than, equal, greater than or equal, less than or equal, not equal, or the symbols that 
represent them

Nested statement – a type of statement inside another statement of the same type; i.e., an If statement inside another If statement, a  loop inside another 
loop

Programming I
19



1.

2.

3. Nested loop – a loop inside another loop

4. Sentinel loop – a loop that continues until a flag or signal for end of that data is encountered

Counter – a variable that is used to keep count of the number of times a loop executes or some other event occurs; uses the pattern variable = variable ; i.e., 
number of students = number of students + 1

Unit 8:  Loops
Accumulator – a variable that is used to keep a sum of the values of another variable; uses the pattern variable = + number ; i.e., sum = sum + total

Programming I
20


